Open books on contact five-manifolds

نویسنده

  • OTTO VAN KOERT
چکیده

The aim of this paper is to give an alternative proof of a theorem about the existence of contact structures on five-manifolds due to Geiges. This theorem asserts that simply-connected five-mani-folds admit a contact structure in every homotopy class of almost contact structures. Our proof uses the open book construction of Giroux.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 00 6 Open Books on Contact Five - Manifolds

The aim of this paper is to give an alternative proof of a theorem about the existence of contact structures on five-manifolds due to Geiges. This theorem asserts that simply-connected five-manifolds admit a contact structure in every homotopy class of almost contact structures. Our proof uses the open book construction of Giroux.

متن کامل

Open Books and Configurations of Symplectic Surfaces

We study neighborhoods of configurations of symplectic surfaces in symplectic 4–manifolds. We show that suitably “positive” configurations have neighborhoods with concave boundaries and we explicitly describe open book decompositions of the boundaries supporting the associated negative contact structures. This is used to prove symplectic nonfillability for certain contact 3–manifolds and thus n...

متن کامل

Overtwisted Open Books From Sobering Arcs

We study open books on three manifolds which are compatible with an overtwisted contact structure. We show that the existence of certain arcs, called sobering arcs, is a sufficient condition for an open book to be overtwisted, and is necessary up to stabilization by positive Hopf-bands. Using these techniques we prove that some open books arising as the boundary of symplectic configurations are...

متن کامل

Contact Homology of Left-handed Stabilizations and Plumbing of Open Books

We show that on any closed contact manifold of dimension greater than 1 a contact structure with vanishing contact homology can be constructed. The basic idea for the construction comes from Giroux. We use a special open book decomposition for spheres. The page is the cotangent bundle of a sphere and the monodromy is given by a left-handed Dehn twist. In the resulting contact manifold we exhibi...

متن کامل

Legendrian Realization in Convex Lefschetz Fibrations and Convex Stabilizations

In this paper, we study compact convex Lefschetz fibrations on compact convex symplectic manifolds (i.e., Liouville domains) of dimension 2n + 2 which are introduced by Seidel and later also studied by McLean. By a result of Akbulut-Arikan, the open book on ∂W , which we call convex open book, induced by a compact convex Lefschetz fibration on W carries the contact structure induced by the conv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007